Направления развития вычислительной техники. Тенденции развития средств вычислительной техники По Информатике и вычислительной технике

СОДЕРЖАНИЕ
ВВЕДЕНИЕ


1.4. Новейшие достижения
2. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
2.1. Исходные данные
2.2. Выполнение задания
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ
Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих отраслях человеческой жизни. Еще десять лет назад было редкостью увидеть какой-нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. А теперь в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь самих обитателей дома.
Сама идея создания искусственного интеллекта появилась очень давно, но только в 20 столетии ее начали приводить в исполнение. Сначала появились огромные компьютеры, которые были зачастую размером с огромный дом. Использование таких махин было не очень удобно, но мир не стоял на одном месте эволюционного развития - менялись люди, менялась их среда обитания, и вместе с ней менялись и сами технологии, все больше совершенствуясь. И компьютеры становились все меньше и меньше по своим размерам, пока не достигли сегодняшних размеров.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных ЭВМ, и особенно микроЭВМ.
За время, прошедшее с 50-х годов, цифровая ЭВМ превратилась из «волшебного», но при этом дорогого, уникального и перегретого нагромождения электронных ламп, проводов и магнитных сердечников в небольшую по размерам машину – персональный компьютер – состоящий из миллионов крошечных полупроводниковых приборов, которые упакованы в небольшие пластмассовые коробочки.
В результате этого превращения компьютеры стали применяться повсюду. Они управляют работой кассовых аппаратов, следят за работой автомобильных систем зажигания, ведут учет семейного бюджета, или просто используются в качестве развлекательного комплекса, но это только малая часть возможностей современных компьютеров. Более того, бурный прогресс полупроводниковой микроэлектроники, представляющей собой базу вычислительной техники, свидетельствует о том, что сегодняшний уровень как самих компьютеров, так и областей их применения является лишь слабым подобием того, что наступит в будущем.
Изучение компьютерной техники уже введено в программы школьного обучения как обязательный предмет, чтобы ребенок смог уже с довольно раннего возраста знать строение и возможности компьютеров. А в самих школах (в основном на западе и в Америке) уже многие годы компьютеры применялись для ведения учебной документации, а теперь они используются при изучении многих учебных дисциплин, не имеющих прямого отношения к вычислительной технике.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, их влияние на развитие научно-технического прогресса трудно переоценить. Области применения ЭВМ непрерывно расширяются, чему в значительной степени способствует распространение персональных компьютеров, и особенно микроПК.
Цель данной работы – рассмотреть перспективы развития персональных компьютеров.
1. ОСНОВНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ КОМПЬЮТЕРНОЙ ТЕХНИКИ
1.1. Развитие оптических компьютеров
Развитие вычислительной техники представляет собой постоянно сменяющие друг друга физические способы реализации логических алгоритмов - от механических устройств (вычислительная машина Бэббиджа) к ламповым (компьютеры 40-50-х годов Марк I и Марк II), затем к транзисторным и, наконец, к интегральным схемам. И уже на рубеже XXI века шли разговоры о скором достижении пределов применения полупроводниковых технологий и появлении вычислительных устройств, работающих на совершенно ином принципе. Все это свидетельствует о том, что прогресс не стоит на месте, и с течением времени ученые открывают новые возможности создания вычислительных систем, принципиально отличающихся от широко применяемых компьютеров. Существует несколько возможных альтернатив замены современных компьютеров, одна из которых - создание так называемых оптических компьютеров, носителем информации в которых будет световой поток.
Проникновение оптических методов в вычислительную технику ведется по трем основным направлениям. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных специальных задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связано с использованием оптических соединений для передачи сигналов на различных ступенях иерархии элементов вычислительной техники, т.е. создание чисто оптических или гибридных (оптоэлектронных) соединений вместо обычных, менее надежных, электрических соединений. При этом в конструкции компьютера появляются новые элементы - оптоэлектронные преобразователи электрических сигналов в оптические и обратно. Но самым перспективным направлением развития оптических вычислительных устройств является создание компьютера, полностью состоящего из оптических устройств обработки информации. Это направление интенсивно развивают с начала 80-х годов ведущие научные центры (MTI, Sandia Laboratories и др.) и основные компании-производители компьютерного оборудования (Intel, IBM, AMD).
В основе работы различных компонентов оптического компьютера (трансфазаторы-оптические транзисторы, триггеры, ячейки памяти, носители информации) лежит явление оптической бистабильности. Оптическая бистабильность - это одно из проявлений взаимодействия света с веществом в нелинейных системах с обратной связью, при котором определенной интенсивности и поляризации падающего на вещество излучения соответствуют два (аналог 0 и 1 в полупроводниковых системах) возможных стационарных состояния световой волны, прошедшей через вещество, отличающихся амплитудой и (или) параметрами поляризации. Причем предыдущее состояние вещества однозначно определяет, какое из двух состояний световой волны реализуется на выходе. Для большего понимания явление оптической бистабильности можно сравнить с обычной петлей магнитного гистерезиса (эффект, используемый в магнитных носителях информации). Увеличение интенсивности падающего на вещество светового луча до некоторого значения I1 приводит к резкому возрастанию интенсивности прошедшего луча; на обратном же ходе при уменьшении интенсивности падающего луча до некоторого значения I2 Весь набор полностью оптических логических устройств для синтеза более сложных блоков оптических компьютеров реализуется на основе пассивных нелинейных резонаторов-интерферометров. В зависимости от начальных условий (начального положения пика пропускания и начальной интенсивности оптического излучения) в пассивном нелинейном резонаторе, нелинейный процесс завершается установлением одного из двух устойчивых состояний пропускания падающего излучения. А из нескольких нелинейных резонаторов можно собрать любой, более сложный логический элемент (триггер).
Элементы памяти оптического компьютера представляют собой полупроводниковые нелинейные оптические интерферометры, в основном, созданными из арсенида галлия (GaAs). Минимальный размер оптического элемента памяти определяется минимально необходимым числом атомов, для которого устойчиво наблюдается оптическая бистабильность. Это число составляет ~1000 атомов, что соответствует 1-10 нанометрам.
К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров – оптические процессоры, ячейки памяти), однако до полной сборки еще далеко. Основной проблемой, стоящей перед учеными, является синхронизация работы отдельных элементов оптического компьютера в единой системе, поскольку уже существующие элементы характеризуются различными параметрами рабочей волны светового излучения (интенсивность, длина волны), и уменьшение его размера. Если для конструирования оптического компьютера использовать уже разработанные компоненты, то обычный PC имел бы размеры легкового автомобиля. Однако применение оптического излучения в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами, а именно:
 световые потоки, в отличие от электрических, могут пересекаться друг с другом;
 световые потоки могут быть локализованы в поперечном направлении до нанометровых размеров и передаваться по свободному пространству;
 скорость распространения светового сигнала выше скорости электрического;
 взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связи и создании параллельных архитектур.
Вообще, создание большего количества параллельных архитектур, по сравнению с полупроводниковыми компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации, свойственные современным ЭВМ. Развитие оптических технологий все равно будет продолжаться, поскольку полученные результаты важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Internet.
1.2. Развитие квантовых компьютеров
Рассмотрим, что такое квантовый компьютер. Основной его строительной единицей является кубит (qubit, Quantum Bit). Классический бит имеет лишь два состояния - 0 и 1, тогда как состояний кубита значительно больше. Для описания состояния квантовой системы было введено понятие волновой функции, ее значение представляется в виде вектора с большим числом значений. Существуют волновые функции, которые называются собственными для какой-либо определенной величины. Квантовая система может находиться в состоянии с волновой функцией, равной линейной комбинации собственных функций, соответствующих каждому из возможных значений (такое состояние называется сложным), т. е. физически - ни в возбужденном, ни в основном состоянии. Это означает, что кубит в одну единицу времени равен и 0, и 1, тогда как классический бит в ту же единицу времени равен либо 0, либо 1. Как для классических, так и для квантовых компьютеров были введены элементарные логические операции: дизъюнкция, конъюнкция и квантовое отрицание, при помощи которых будет организована вся логика квантового компьютера.
Опишем, как работает квантовый компьютер. Согласно законам квантовой механики, энергия электрона, связанного в атоме, не произвольна. Она может иметь лишь определенный прерывный (дискретный) ряд значений Е0, Е1,... Еn называемых уровнями энергии. Этот набор называют энергетическим спектром атома. Самый нижний уровень энергии Е0, при котором энергия атома наименьшая, называется основным. Остальные уровни (Е1, Е2,... Еn) соответствуют более высокой энергии атома и называются возбужденными. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями - квантами, или фотонами. При поглощении фотона энергия увеличивается - он переходит «вверх» - с нижнего на верхний уровень, при излучении фотона атом совершает обратный переход вниз.
Если атом в данный момент времени находится в одном из возбужденных состояний Е2, то такое состояние атома неустойчиво, даже если на него не влияют другие частицы. Через очень короткое время атом перейдет в одно из состояний с меньшей энергией, например Е1. Такой самопроизвольный (спонтанный) переход с одного уровня на другой и сопровождающее его спонтанное излучение столь же случайны во времени, как радиоактивный распад ядра атома. Предсказать точно момент перехода принципиально невозможно - можно лишь говорить о вероятности того, что переход произойдет через такое-то время. Но атом может перейти с уровня Е2 на Е1 не спонтанно, а под действием электромагнитной волны, если только частота этой волны достаточно близка к частоте перехода атома. Такая резонансная волна как бы «расшатывает» электрон и ускоряет его «падение» на уровень с меньшей энергией. Переходы, происходящие под действием внешнего электромагнитного поля, называются вынужденными (или стимулированными).
При создании квантового компьютера основное внимание уделяется вопросам управления кубитами при помощи вынужденного излучения и недопущении спонтанного излучения, которое нарушит работу всей квантовой системы. От рассказа о физике происходящих в квантовом компьютере процессов перейдем к тому, как эти свойства реализуются в экспериментальном образце квантового компьютера.
Для того чтобы практически реализовать квантовый компьютер, существуют несколько важных правил, которые в 1996 г. привел Дивиченцо (D.P. Divincenzo). Без их выполнения не может быть построена ни одна квантовая система:
 Точно известное число частиц системы.
 Возможность приведения системы в точно известное начальное состояние.
 Высокая степень изоляции от внешней среды.
 Умение менять состояние системы согласно заданной последовательности элементарных преобразований.
Выполнение этих требований вполне реально с помощью существующих квантовых технологий, однако для того, чтобы воплотить теорию в реальность, нужны гигантские суммы денежных средств, которые пока не могут быть выделены на финансирование исследований.

1.3. Создание нейрокомпьютеров
Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И разработчиков «осенило»: мозг и нервная система живых организмов позволяют решать задачи управления и эффективно обрабатывать сенсорную информацию, а это огромный плюс для создаваемых вычислительных систем. Именно это послужило предпосылкой создания искусственных вычислительных систем на базе нейронных систем живого мира. Специалисты, добившись нужных результатов в этой области, создадут компьютер с большими возможностями.
Создание компьютера на основе нейронных систем живого мира базируется на теории перцептронов, разработчиком которой был Розенблатт. Он предложил понятие перцептрона - искусственной нейронной сети, которая может обучаться распознаванию образов. Предположим, что есть некоторая зенитно-ракетная установка, задача которой - распознать цель и определить наиболее опасную из них. Также есть два самолета вероятного противника: штурмовик и бомбардировщик. Зенитно-ракетная установка, используя оптические средства, фотографирует самолеты и отправляет полученные снимки на вход нейронной сети (при полностью сфотографированном самолете нейронная сеть быстро распознает его). Но если снимок получился плохо, то именно здесь используются основные свойства нейронной сети, одно из которых - возможность к самообучению. Например, на снимке отсутствует одно крыло и хвостовая часть самолета. Через некоторое (приемлемое) время нейронная сеть сама дорисовывает отсутствующие части и определяет тип этого самолета и дальнейшие действия по отношению к нему. Из распознанных штурмовика и бомбардировщика оператор данной зенитно-ракетной установки выберет для уничтожения более опасный самолет.
Перспективность создания компьютеров по теории Розенблатта состоит в том, что структуры, имеющие свойства мозга и нервной системы, имеют ряд особенностей, которые сильно помогают при решении сложных задач:
1) Параллельность обработки информации.
2) Способность к обучению.
3) Способность к автоматической классификации.
4) Высокая надежность.
5) Ассоциативность.
Нейрокомпьютеры - это совершенно новый тип вычислительной техники, иногда их называют биокомпьютерами. Нейрокомпьютеры можно строить на базе нейрочипов, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Для решения задач разного типа требуется нейронная сеть разной топологии (топология - специальное расположение вершин, в данном случае нейрочипов, и пути их соединения). Возможна эмуляция нейрокомпьютеров (моделирование) - как программно на ПЭВМ и суперЭВМ, так и программно-аппаратно на цифровых супербольших интегральных схемах.
Искусственная нейронная сеть построена на нейроноподобных элементах - искусственных нейронах и нейроноподобных связях. Здесь важно заметить, что один искусственный нейрон может использоваться в работе нескольких (приблизительно похожих) алгоритмов обработки информации в сети, и каждый алгоритм осуществляется при помощи некоторого количества искусственных нейронов.

1.4. Новейшие достижения
Рассмотрим новейшие достижения в области компьютерных технологий.
1. Суперпамять.
Недавно американская фирма Nantero из Бостона, разработала технологию, позволяющую серийно производить чипы памяти на нанотрубках до 10Гб данных. Память нового поколения, использующая массив фуллереновых трубок на поверхности чипа кремния (NRAM, Nanoscale Random Access Memory) будет хранить данные даже после отключения питания устройства. Это наводит на мысли, как резко может измениться структура компьютера. Ведь по сути, это качественный скачок в производстве компьютеров. Загрузка компьютеров, оснащенных такой памятью, при включении будет происходить мгновенно. Да и быстродействие компьютеров значительно возрастет, так как не будет обращения к винчестеру. Винчестеры как таковые будут не нужны. Можно будет отказаться от системного блока.
Компьютер недалекого будущего состоит из следующих частей. Жидкокристаллический дисплей 19 дюймов на котором сзади располагается системная плата с процессором и памятью. Сейчас Intel выпустила наборы системной логики 865 и 875, с двухканальным контроллером памяти. Наверное, будет 4-х и 8-ми канальная организация памяти. Емкость памяти компьютера 100-200 Гб. От южного моста можно оставить 6 канальный звук. От CD и DVD приводов можно будет отказаться так, как данные удобней будет переносить на компактной флэш-памяти.
2. Робот-натуралист.
Американский дизайнер Сабрина Рааф представила робота, озабоченного проблемами экологии. «Translator II: Grower» представляет собой стальную платформу, которая держится стены и перемещается по периметру ком¬наты. Робот использует самый тривиаль¬ный сенсор углекислого газа для анализа состояния окружающей среды. Каждые несколько секунд машина делает замеры, после чего наносит на стену риску. Через полсантиметра - другую. Чем выше кон¬центрация углекислого газа, тем длиннее полоска. Такая своеобразная диаграмма информирует о состоянии окружающей среды. Особенно интересно наблюдать за поведением робота при большом скоп¬лении людей в помещении.
3. Наш новый суперкомпьютер.
Не так давно в Москве Объединенный институт проблем информатики Наци¬ональной академии наук Беларуси, Инсти¬тут программных систем Российской Ака¬демии Наук, компания «Т-Платформы» и корпорация AMD презентовали супер¬компьютер «СКИФ К-1000». Он предназна¬чен для решения широкого спектра задач в различных областях науки. Этого монстра собрали наши соотечественники совмест¬но с белорусскими коллегами из 576 процессоров AMD Opteron. Компьютер получился самым мощным на всей территории СНГ и Восточ¬ной Европы и занимает почетное 98 место в рейтинге самых скоростных машин ТОР500. Главное, что разра¬ботчики не остановились на достигнутом, и продолжают разработки. Возможно, скоро именно в России будут трудиться самые быстрые компьютеры.
4. Протез мозга.
Ученые из Южнокалифорнийского университета в Америке разрабо-тали микрочип, имитирующий работу участка головного мозга, отвечающего за запоминание информации. Тестиро¬вание проводилось на мозговых тканях обычной крысы. Оно прошло успешно - проанализиро-вав импульсы, полученные с чипа, уче¬ные пришли к выводу, что они абсолют¬но идентичны тем, которые дает срез ткани головного мозга. В ближай¬шее время команда ученых планирует провести опыты уже не на кусках ткани, а на живых животных. Если опыты пройдут удачно и не будет замечено никаких ано¬малий, то, разумеется, разработки будут продолжаться дальше. Хотя, как заявляет Теодор Бергер, до создания полноценно¬го протеза еще далеко. Например, пока не ясно, каким образом микрочип будет взаимодействовать с те¬ми участками мозга, с которыми его не получится соединить напрямую.
5. Робот-носильщик.
Компания Fujitsu представила универ¬сального робота-носильщика. Еще в фойе робот приветствует гостей отеля хриплым баритоном. Уточнив номер ком¬наты, Service Robot берет тяжелые чемо¬даны в обе «руки» и начинает движение в сторону лифта. А если вещей много, вы¬катывает специальную тележку. Элект¬ронная карта отеля, восемь камер и ульт-развуковые сенсоры позволяют роботу преодолевать любые препятствия. Пра¬вое и левое колеса вращаются независи¬мо, поэтому движение по наклонным и неровным поверхностям дается легко. Используя систему обработки трехмер¬ных изображений, робот может хватать предметы и протягивать их гостям. За реалистичное движение «рук» отвечает модель нервной системы позвоночных. В продолжение своей миссии Service Robot нажимает кнопку вызова лифта, подни¬мается на этаж и провожает гостей в но¬мер. Робот чутко воспринимает голосо¬вые инструкции. Три микрофона позволя¬ют ему определить источник команд, что¬бы обернуться на голос. Справки об оте¬ле можно получить на цветном сенсор¬ном экране. Робот подключен к интерне¬ту по интерфейсу Wi-Fi 802.11b. Дроид самостоятельно контролирует заряд батареи и время от времени отправляется на базу для индукционной подзарядки без прямого контакта с зарядным устрой¬ством. Ночью робот патрулирует коридоры отеля. Размеры Service Robot -65x57x130 см. Вес робота - 63 кг. Ско¬рость движения - до 3 км/ч. Service Robot поступил в продажу в июне 2005 года по цене 18 тысяч долларов.

2. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
2.1. Исходные данные
Организация ООО «Тобус» начисляет амортизацию на свои основные средства (ОС) линейным методом согласно установлен¬ному сроку службы (рис. 14.1). При этом необходимо отслеживать ОС в разрезе подразделений (рис. 14.2).
Сумма амортизации = Первоначальная стоимость/Срок службы
Начисление амортизации следует производить, только если ОС находится в эксплуатации.
Организовать ведение журнала регистрации ОС по подраз¬делениям и ежемесячные начисления амортизации согласно со¬стоянию ОС (рис. 14.3).
1. Создать таблицы по приведенным ниже данным (рис. 14.1 - 14.3).
2. Организовать межтабличные связи для автоматического заполнения графы журнала учета ОС (рис. 14.3): «Наименование ОС», «Наименование подразделения», «Срок службы, мес.».
3. Определить общую сумму амортизации по каждому ОС.
4. Определить общую сумму амортизации по конкретному подразделению.
5. Определить общую сумму амортизации по каждому ме¬сяцу.
6. Определить остаточную стоимость ОС.
7. Построить гистограмму по данным сводной таблицы.

Рис. 14.2. Список подразделений организации.

Рис. 14.3. Расчет суммы амортизации ОС.

2.2. Выполнение задания
Для выполнения этого задания удобнее всего воспользоваться программой Excel.
С помощью программы Excel можно создавать самые различные документы. Рабочие листы (Sheets) можно использовать для составления таблиц, вычисления статистических оценок, управления базой данных и составления диаграмм. Для каждого из этих приложений программа Excel может создать отдельный документ, который сохраняется на диске в виде файла.
Файл может содержать несколько взаимосвязанных рабочих листов, образующих единый трехмерный документ (блокнот, рабочую папку). С помощью трехмерных документов пользователь получает прямой доступ одновременно к нескольким таблицам и диаграммам, что повышает эффективность их обработки.
Все данные таблицы записываются в так называемые ячейки, которые находятся на пересечении строк и столбцов таблицы. По умолчанию содержимое ячейки представляется программой Excel в стандартном формате, который устанавливается при запуске программы. Например, для чисел и текстов задается определенный вид и размер шрифта.
В программе Excel имеются контекстные меню, которые вызываются правой кнопкой мыши, когда промаркирована некоторая область таблицы. Эти меню содержат много директив обработки и форматирования таблиц. Директивы форматирования можно также вызвать на панели форматирования (вторая строка пиктографического меню), щелкнув мышью по соответствующей пиктограмме.
Отдельные ячейки таблицы маркируются (выделяются) автоматически с помощью указателя ячеек. Чтобы перевести указатель в заданную ячейку, нужно щелкнуть по ней левой кнопкой мыши или использовать клавиши управления курсором. Для маркировки нескольких ячеек нужно щелкнуть в начале маркируемой области (левый верхний угол) и, удерживая кнопку мыши нажатой, перемещать манипулятор в конец области (правый нижний угол). Чтобы отменить маркировку области, можно просто щелкнуть по немаркированной ячейке. Для маркирования нескольких ячеек с помощью клавиатуры необходимо установить указатель ячеек в начальную ячейку области, а затем, удерживая клавишу нажатой, распространить маркировку на всю область с помощью клавиш управления курсором.
Одна строка или столбец таблицы маркируются щелчком по номеру (адресу), который расположен в заголовке строки или столбца. Для маркирования нескольких строк или столбцов нужно щелкнуть по номеру первой строки (столбца), а затем, удерживая кнопку мыши нажатой, переместить манипулятор в нужную позицию.
Возможность использования формул и функций является одним из важнейших свойств программы обработки электронных таблиц. Это, в частности, позволяет проводить статистический анализ числовых значений в таблице.
Текст формулы, которая вводится в ячейку таблицы, должен начинаться со знака равенства (=), чтобы программа Excel могла отличить формулу от текста. После знака равенства в ячейку записывается математическое выражение, содержащее аргументы, арифметические операции и функции.
В качества аргументов в формуле обычно используются числа и адреса ячеек. Для обозначения арифметических операций могут использоваться следующие символы: + (сложение); - (вычитание); * (умножение); / (деление).
Формула может содержать ссылки на ячейки, которые расположены на другом рабочем листе или даже в таблице другого файла. Однажды введенная формула может быть в любое время модифицирована. Встроенный Менеджер формул помогает пользователю найти ошибку или неправильную ссылку в большой таблице.
Кроме этого, программа Excel позволяет работать со сложными формулами, содержащими несколько операций. Для наглядности можно включить текстовый режим, тогда программа Excel будет выводить в ячейку не результат вычисления формулы, а собственно формулу.
Выполненное задание расположено в приложении.
ЗАКЛЮЧЕНИЕ
Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из них являются квантовые компьютеры, нейрокомпьютеры и оптические компьютеры, поскольку современная элементная и технологическая база имеет все необходимое для их создания.
В данной работе рассматривались три вида компьютеров: квантовые компьютеры, которые построены на основе явлений, возникающих в квантовой физике и дающих мощный вычислительный агрегат при решении задач сложных вычислений; нейрокомпьютеры и оптические компьютеры, которые построены на различной теоретической базе, но схожи в том, что и те и другие занимаются обработкой информации.
С достоверностью известно, что уже сейчас существуют системы обработки информации, построенные на объединении оптических и нейронных компьютеров, - это так называемые нейроно-оптические компьютеры. Для того чтобы создать мощную систему обработки информации, пришлось разработать гибридную систему, т. е. имеющую свойства как оптических, так и нейронных компьютеров. С целью проиллюстрировать практическое воплощение компьютерного прогресса в данной работе были приведены примеры новейших изобретений в сфере высоких технологий.

СПИСОК ЛИТЕРАТУРЫ
1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы / Учебник. – СПб: Питер, 2004.
2. Барановская Т.П. и др. Архитектура компьютерных систем и сетей / Учеб. пособие. – М.: Наука, 2003.
3. Барановская Т.П. и др. Информационные системы и технологии в экономике / Учебник. - 2-е изд., доп. и перераб. – М.: Дело, 2005.
4. Экономическая информатика / Учебник / Под ред. В.П. Косарева - 2-е изд. перераб. и доп. – М.: Инфра-М, 2005.
5. Макарова Н.В. Информатика / Учебник. - 3-е издание, перераб. – М.: Финансы и статистика, 2006.
6. Фигурнов В.Э. IBM PC для пользователя. - М.: Инфра–М, 2003.

ПРИЛОЖЕНИЕ

Похожие материалы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современные тенденции развития радиопередающей техники

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

Радиопередатчики, в которых используются цифровые способы формирования, обработки и преобразования колебаний и сигналов, будем далее называть цифровыми радиопередающими устройствами (ЦРПдУ).

Рассмотрим современные требования к РПдУ, которые ставят проблемы, не решаемые в принципе методами аналоговой схемотехники, что вызывает необходимость применения цифровых технологий в РПдУ.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

Обеспечение помехоустойчивости в перегруженном радиоэфире;

Повышение пропускной способности каналов;

Экономичность использования частотного ресурса при многоканальной связи;

Улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.

Основным направлением развития систем связи является обеспечение множественного доступа, при котором частотный ресурс совместно и одновременно используется несколькими абонентами. К технологиям множественного доступа относятся TDMA, FDMA, CDMA и их комбинации. При этом повышают требования и к качеству связи, т.е. помехоустойчивости, объему передаваемой информации, защищенности информации и идентификации пользователя и пр. Это приводит к необходимости использования сложных видов модуляции, кодирования информации, непрерывной и быстрой перестройки рабочей частоты, синхронизации циклов работы передатчика, приемника и базовой станции, а также обеспечению высокой стабильности частоты и высокой точности амплитудной и фазовой модуляции при рабочих частотах, измеряемых гигагерцами. Что касается систем вещания , здесь основным требованием является повышение качества сигнала на стороне абонента, что опять же приводит к повышению объема передаваемой информации в связи с переходом на цифровые стандарты вещания. Крайне важна также стабильность во времени параметров таких радиопередатчиков - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами.

Современную радиопередающую технику невозможно представить без встроенных средств программного управления режимами работы каскадов, самодиагностики, автокалибровки, авторегулирования и защиты от аварийных ситуаций, в том числе автоматического резервирования. Такие функции в передатчиках осуществляют специализированные микроконтроллеры, иногда совмещающие функции цифрового формирования передаваемых сигналов. Часто используется дистанционное управление режимами работы при помощи удаленного компьютера через специальный цифровой интерфейс. Любой современный передатчик или трансивер обеспечивает определенный уровень сервиса для пользователя , включающий цифровое управление передатчиком (например, с клавиатуры) и индикацию режимов работы в графической и текстовой форме на экране дисплея. Очевидно, что здесь не обойтись без микропроцессорных систем управления передатчиком, определяющих его важнейшие параметры.

Производство передатчиков такого уровня сложности было бы экономически невыгодно в случае их аналогового исполнения. Именно средства цифровой микросхемотехники, позволяющие заменить целые блоки обычных передатчиков, дают возможность существенно улучшить массогабаритные показатели передатчиков (вспомните сотовые телефоны), достичь повторяемости параметров, высокой технологичности и простоты в их изготовлении и настройке.

Очевидно, что появление и развитие цифровых радиопередающих устройств явилось неизбежным и необходимым этапом истории радиотехники и телекоммуникаций, позволив решить многие насущные задачи, недоступные аналоговой схемотехнике.

В качестве примера рассмотрим вещательный цифровой радиопередатчик HARRIS PLATINUM Z (рис.1.1), обладающий следующими основными особенностями (информация на www.pirs.ru):

А) Полностью цифровой FM-возбудитель HARRIS DIGITTM с встроенным стереогенератором с цифровой обработкой сигнала. Будучи первым в мире полностью цифровым FМ-возбудителем, HARRIS DIGITTM принимает звуковые частоты в стандарте AES/EBU в цифровом виде и генерирует максимально модулированную несущую радиочастоту полностью в цифровом режиме, благодаря чему уровень помех и искажений ниже, чем в любом другом FM-передатчике (16-битовое цифровое качество ЗЧ).

Б) Система быстрого пуска обеспечивает достижение полной мощности по всем показателям в течение 5 секунд после включения.

В) Контроллер на микропроцессорах позволяет осуществлять полный контроль, диагностику и вывод на дисплей. Включает в себя встроенную логику и команды для переключения между основными/дополнительными HARRIS DIGITTM возбудителями и предварительным усилителем мощности (ПУМ).

Г) Широкополосная схема позволяет отказаться от настройки в диапазоне от 87 до 108 МГц (при варианте N+1). Изменение частоты можно произвести вручную переключателями менее чем за 5 минут, и менее чем за 0,5 сек с помощью дополнительного внешнего контроллера.

Рис.1.1

Еще одним примером цифрового радиопередатчика может послужить устройство для беспроводной передачи данных BLUETOOTH (информация www.webmarket.ru), который будет подробнее рассмотрен в п.3.1 (рис.1.2 и табл.1.1).

Рис.1.2.

Табл.1.1. Краткие спецификации Bluetooth

Итак, выделим основные области применения цифровых технологий формирования и обработки сигналов в радиопередающих устройствах.

1. Формирование и преобразование аналоговых и цифровых информационных НЧ сигналов, в т.ч. сопряжение компьютера с радиопередатчиком (групповые сигналы, кодирование, преобразование аналоговых сигналов в цифровые или наоборот).

2. Цифровые методы модуляции ВЧ сигналов.

3. Синтез частот и управление частотой.

4. Цифровой перенос спектра сигналов.

5. Цифровые методы усиления мощности ВЧ сигналов.

6. Цифровые системы автоматического регулирования и управления передатчиками, индикации и контроля.

Следующие разделы содержат более подробную информацию о каждой из названных областей применения цифровой техники в радиопередатчиках.

Список литературы

1. Цифровые радиоприемные системы / Под ред. М.И. Жодзишского. М.: Радио и связь, 1990. 208 с.

2. Повышение эффективности мощных радиопередающих устройств / Под ред. А.Д.Артыма. М.: Радио и связь, 1987. 175 с.

3. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Учеб. пособие для вузов. М.: Радио и связь, 1990. 256 с.

4. Семенов Б.Ю. Современный тюнер своими руками. М.: СОЛОН_Р. 2001. 352 с.

Подобные документы

    История развития и становления радиопередающих устройств, основные проблемы в их работе. Обобщенная структурная схема современного радиопередатчика. Классификация радиопередатчиков по разным признакам, диапазон частот как одна из характеристик приборов.

    реферат , добавлен 29.04.2011

    Общие сведения о Bluetooth’е, что это такое. Типы соединения, передача данных, структура пакета. Особенности работы Bluetooth, описание его протоколов, уровня безопасности. Конфигурация профиля, описание основных конкурентов. Спецификации Bluetooth.

    контрольная работа , добавлен 01.12.2010

    Характеристики радиопередающих устройств, их основные функции: генерация электромагнитных колебаний и их модуляции в соответствии с передаваемым сообщением. Проектирование функциональной схемы радиопередатчика и определение его некоторых параметров.

    реферат , добавлен 26.04.2012

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Задачи применения аналого-цифровых преобразователей в радиопередатчиках. Особенности цифро-аналоговых преобразователей (ЦАП) для работы в низкочастотных трактах, системах управления и специализированных быстродействующих ЦАП с высоким разрешением.

    курсовая работа , добавлен 15.01.2011

    Основные характеристики видео. Видеостандарты. Форматы записи. Методы сжатия. Современные мобильные видеоформаты. Программы, необходимые для воспроизведения видео. Современные видеокамеры. Носители цифрового видео. Спутниковое телевидение.

    реферат , добавлен 25.01.2007

    Что такое Bluetooth? Существующие методы решения отдельных задач. "Частотный конфликт". Конкуренты. Практический пример решения. Bluetooth для мобильной связи. Bluetooth-устройства. Декабрьский бум. Кто делает Bluetooth-чипы? Харольд Голубой Зуб.

    реферат , добавлен 28.11.2005

    Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.

    курсовая работа , добавлен 03.12.2010

    Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат , добавлен 23.10.2014

    Основные тенденции развития рынка данных дистанционного зондирования Земли в последнее десятилетие. Современные космические ДДЗ высокого разрешения. Спутники сверхвысокого разрешения. Перспективные картографические комплексы Cartosat-1 и Cartosat-2.

В прошедшем столетии были сделаны многие открытия и изобретения, сыгравшие революционную роль в развитии современной цивилизации.

    создание и развитие средств связи, особенно беспроводной.

    Изобретение кинематографа.

    Возникновение и развитие авиации и космической техники. Современные летательные аппараты по своим техническим и конструктивным характеристикам не сопоставимы с первыми летательными аппаратами.

    Но наиболее разительный прогресс произошел в области вычислительной техники. (ок 50 лет назад первые ЭВМ имели вез ок. 30 тонн, площадь ок. 200м 2)

время выполнения вычислений измерялось часами или сутками.

Теперь ЭВМ можно разместить на кремниевом кристалле S=5мм 2 , время выполнения расчетов – микросекунды, стоят мало.

При этом в отличие от 1ых ЭВМ, которые программируют в математических кодах и способны были выполнять главным образом только громоздкие математические вычисления, то современные ЭВМ способны доказывать теоремы, переводить текст, воспроизводить движущиеся объекты.

Появление первой машины для выполнения четырех арифметических действий дотируется началом 17 в. (1623 г В. Шикард изобрел мех. машину сложения, вычитания, частично умножения и деления), но более известным оказался настольный арифмометр (1642г.) франц. ученым Паскалем. 1671г. Лейбниц изобрел т.н. зубчатое колесо Лейбница, позволяющее выполнять 4 арифметические операции.

В 19 в. обострилась потребность в выполнении вычислении, связанных с обработкой результатов астрономических наблюдений, расчеты, связанные с составление математических таблиц. Поэтому в 1823 англ. математик Чарльз Бэббидж начал разрабатывать автоматизированную разностную машину, приводимую в действие паровым двигателем.

Машина должна была вычислять значения полиномов и печатать результаты на негативе для фотопечати, однако существующее в то время технические средства не дали возможности завершить воплощение этой идеи, а кроме того, сам Бэббидж увлекся проектированием более мощной счетной машины. Новая счетная машина Бэббиджа получила название «аналитическая».

1894 г. он изложил ее основные принципы, которые были воплощены в ткацком станке программы с перфокарточным управлением француза Жаккаром.

Аналитическая машина явилась одной из первых программируемых автоматических вычислительных машин с последовательным управлением. Она имела арифметическое устройство и память.

Меценат проекта была графиня Ада Августа Лавлейс – первый женщина программист. В честь ее назван язык программирования «Ада».

В конце 19 в. Холлерит разработал машину с перфокарточным вводом, способную автоматически классифицировать и составлять таблицу данных. Она была использована в 1890 г. в Америке на ней проведены переписи населения. Программа считывалась с перфокарты с помощью электроконтактных щеток. В качестве цифровых счетчиков – эм реле.

1896 г. Хоррелит основал фирму, предшественницу IBM.

После смерти Бэббиджа заметно прогрессов не было.

скорость вычисление механич. или элетромех. машин была ограничена, поэтому в 30хх гг. 20 в началась разработка электронных вычислительных машин (ЭВМ). На основе вакуумных 3х электродных лампах (триодах), которые изобрел в 1906 Лид Фрест.

Первая универсальная ЭВМ «Эниак» была разработана в пенсильваском институте США (1940-1946 г.) – разработка численных таблиц для вычисления траектории полета объектов. (18 тыс. электронных плат, 140 кВт, 10ая СС, программировалась вручную с помощью переключателей.

Современные тенденции развития средств вычислительной техники.

В настоящее врем в мире происходит переход от индустриального общества к информационному. Если главным содержанием индустриального общества было производство и потребление мат. благ, то движущей силой информационного общества является создание и потребление информационных ресурсов различного типа и назначения. При этом достижение экономических и социальных результатов определяется не сколько и не столько наличием мат.-энергетических ресурсов, сколько масштабом и темпами информатизации общества и широким использованием информационных технологий во всех сферах человеческой деятельности.

Независимость от различия и особенностей процессов информации в различных областях общественной жизни для них характерно наличие 3х составляющих:

    идентичность (единообразие) основных средств производства (средства выч. техники и информатики)

    идентичность «сырья» (исходные данные, подлежащие анализу и обработке)

    Идентичность выпускаемой продукции («обработанная» информация)

Ключевая роль в инфраструктуре информации принадлежит системным телекоммуникациям, а также выч. системам и их сетям.

В этих областях сосредоточены новейшие средства выч. техники, информатики и связи, а также используются наиболее прогрессивные информационные технологии.

В прошедшей истории развития ЭВТехники (начавшиеся с 40х гг 20в) можно выделить 4 поколения ЭВМ, отличающихся между собой элементной базой, функционально логической организацией, конструктивно-тех. исполнением, программным обеспечением, тех и эксплуатационным характеристиками режимами пользования.

Смене поколений сопутствовала изменение тех-эксплуатацион и тех-

экономических показателей ЭВМ.

В первую очередь это:

быстродействие, емкость памяти, надежность, стоимость.

Одновременно этому сопутствовала тенденция совершенствования программного обеспечения и повышение эффективности использования и обращения к ней.

В настоящее время ведутся работы над создание ЭВМ 5ого поколения, которые приблизили реальность создание искина.

Классификация средств эвТехники

К настоящему времени в мире уже произведенные работают и вновь создаются миллионы ЭВМ различного типа, класса и уровня.

ЭВТ принято делить на аналоговую и цифровую.

В АВМ информация представляется соответствующими значениями тех или иных аналогов (непрерывных физ. величин) – тока, напряжения, угла поворота и т.д.

АВМ обеспечивают приемлемое быстродействие, но умеренную точность вычислений ок. 10 -2 -10 -3

АВМ имеют достаточно ограниченное распространение и применяются главным образом в НИИ и проектно-конструкторских организациях при разработке исследований и совершенстве след. образцов техники, т.е. АВМ относятся к области специализируемых ЭВМ.

Более широкое распространение получили ЦВМ, в которых информация отображается с помощью цифровых или бинарных кодов.

Быстрые темпы развития и смены моделей ЦВМ затрудняют использование какой-либо их стандартной классификации.

Академик Глужков отмечал, что можно выделить 3 глобальных сферы, требующие использования качественно различных типов ЭВМ, а и.:

    традиционное применение ЭВМ для автоматизированных вычислений

    использование ЭВМ в различных системах управления (с 60х гг - сфера в наибольшей степени предполагает использование линии ЭВМ)

Машины этого профиля должны отвечать след. требованиям:

    более дешевыми по сравнению с большими централизованными ЭВМ.

    более надежными, особенно при работе непосредственно в контуре управления.

    обладать большей гибкостью и адаптивностью к условиями работы

    было архитектурно прозрачным, т.е. структура и функции ЭВМ должны быть понятны широкому пользователю.

3. Для решения задач искусственного интеллекта.

Рынок ЭВМ имеет широкий диапазон классов и моделей ЭВМ. Например, IBM, выпускающий приблизительно 80% мирового машинного парка производит главным образом 4 класса компьютеров:

    большие ЭВМ (mainframe ) – многопользовательские машины с централизованной обработкой информацию и различными формами удаленного доступа. По оценкам специалистов IBM ок. 50% всего объема данных в информационных системах мира должны хранится в больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов.

Развитие ЭВМ данного класса имеет большое значение и для РФ, т.к. у нас имеется огромный задел по программе ЕС ЭВМ, заимствовавших архитектуру IBM 360 / 310 , поэтому принято решение продолжить развитие этого направления и в 1993 г. с IBM было подписано соглашение, согласно которому РФ получила право производить 23 вида новейших моделей – аналогов IBM с производительностью от 1,5 до 167 миллионов операций в сек.

    Машины RS / 6000 , у которых высокая производительность и предназначены для построения работы станций, для работы с графикой, для UNIX серверов и кластерных комплексов для научных исследований.

    Средние ЭВМ в первую очередь для работы в финансовых структурах (бизнес компьютеры). В них особенное внимание уделяется сохранению и безопасности данных, также программной совместимости. Эти машины используются в качестве серверов локальных сетей.

    Компьютеры на платформе микропроцессоров Intel

    Вычислительные системы, использующие параллельную работу.

Можно использовать след. классификацию средств ЭВМ на основе их разделения по быстроте действия :

    супер ЭВМ , для решения сложных вычислительных задач и для обслуживания крупнейших информационных банков данных

    большие ЭВМ , для ведомств, территориальных и региональных вычислительных центров.

    средние ЭВМ , для АСУТП (АСУ технологического процесса) и АСУП (производства), а также для управления распределенной обработкой информации в качестве серверов.

    персональные и профессиональные ЭВМ на их базе формируются АРМ (автоматизированные рабочие места) для специалистов различного профиля.

    встраиваемые микропроцессоры (микро ЭВМ) для автоматизированного управления отдельными устройствами и механизмами.

РФ испытывает потребность:

Супер ЭВМ ~ 100-200 шт.

Большие ЭВМ ~ 1000 шт.

Средние ЭВМ ~ 10 4 -10 5 шт

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра ТПО

РЕФЕРАТ

По Информатике и вычислительной технике

«Тенденции и перспективы развития информатики и вычислительной техники»


Введение

1. Тенденции развития вычислительных систем

2. Тенденции развития информатики

Заключение

Список литературы


Введение

Появление и развитие электронной вычислительной техники во второй половине ХХ века оказало и продолжает оказывать огромное влияние на мировое общество и мировую экономику. Значимость информационных технологий на основе компьютеризации носит глобальный характер. Их воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей.

В наше время жизнь каждого отдельного человека и всего социума в целом тесно связана с компьютером. Электронно-вычислительная техника всё шире входит во все сферы нашей жизни. Компьютер стал привычным не только в производственных целях и научных лабораториях, но и в студенческих аудиториях и школьных классах. Непрерывно растёт число специалистов, работающих с персональным компьютером, который становится их основным рабочим инструментом. Ни экономические, ни научные достижения невозможны теперь без быстрой и четкой информационной связи и без специального обученного персонала.

В продолжение всей истории вычислительной техники дискутируется проблема специализации средств вычислительной техники (СВТ) и вычислительных систем (ВС) в постановке: альтернатива это или дополнение к направлению развития универсальных компьютерных систем. Станет ли «универсальная» ВС «специализированной», если в ее состав будет включен, например, специализированный процессор? Вместе с тем, любая конкретная универсальная ВС ограничена сферой своего целевого назначения и вследствие этого приобретает свойства специализированности (по крайней мере, на уровне прикладного программного обеспечения).

Академик В.М. Глушков подчеркивал: «… требования увеличения эффективности оборудования, а также упрощения программирования и облегчения общения с человеком ведут к специализации процессоров, хотя каждый из таких специализированных процессоров будет оставаться алгоритмически универсальным и потому в принципе пригодным и для других применений»

Кроме того, успешная реализация ряда современных проектов, связанных с разработкой и производством современных военных систем, позволяет говорить о серьезном прорыве в традиционных подходах к формированию технической и бизнес-политики создания компьютерных систем. Основу этого прорыва составляет то, что для реализации военных проектов широко использованы готовые аппаратные и программные технологии открытого типа, ранее широко апробированные и стандартизированные на рынке общепромышленных гражданских приложений. Это так называемые COTS-технологии (Commercial Off-The-Shelf – «готовые к использованию»). Нормативная база COTS-технологий развивается и поддерживается как в рамках международных (IEC/МЭК, ISO) и национальных (ANSI, DIN, IEEE, ГОСТ) организаций по стандартизации, так и в рамках крупных профессиональных консорциумов (ARINC, PCISIG, VITA, PICMG, Group IPC и т.д.). Стандартизация ведется совместными усилиями большого числа конкурирующих компаний: Motorola, HP, IBM, Sun, производящих совместимую серийную технику.

развитие вычислительная система информатика


Тенденции развития вычислительных систем

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы – вычислительные сети – ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.

Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.

Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.

Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.

В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы – страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

2. Встроенные сетевые и видеоинтерфейсы;

3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Этому уже сейчас способствуют:

1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;

2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.

Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

Классификация компьютеров

Номенклатура видов компьютеров в настоящее время огромна: машины различаются по назначению, мощности, размерам, используемой элементной базе, совместимости, устойчивости по отношению к воздействию неблагоприятных условий и т. д. Для наших целей наиболее интересно сгруппировать компьютеры по производительности, габаритным характеристикам (размеры, вес) и по назначению. Заметим сразу, что классификация в известной мере условна, так как границы между группами размыты и очень подвижны во времени: развитие этой отрасли науки и техники столь стремительно, что, например, сегодняшниеяя микро-компьютеры не уступаеят по мощности мини-компьютерам пятилетней давности.

Принятая на сегодня градация компьютеров представлена в табл. 2.1. Отдельно стоит класс персональных компьютеров

· массовый ПК (Consumer PC),

· переносной (портативный) ПК (Mobile PC),

· деловой ПК (Office PC),

· рабочая станция (Workstation PC)

· развлекательный (мультимедийный) ПК (Entertainment PC).

Категория массовых ПК является базовой, в нее попадает большинство из имеющихся в настоящее время ПК. Для категории переносных ПК предъявляется обязательное требование присутствия средств компьютерной связи. В категории деловых ПК понижены требования к работе с графикой и совсем нет требований по воспроизводству звука. В категории рабочих станций усилены требования к устройствам памяти. В категории мультимедийных ПК особые требования предъявляются к качеству изображений и звука.

Классы современных компьютеров. Таблица 2.1

Класс компьютера Основное назначение Основные технические данные Цена, $ (ориентировочно)
Супер-компьютеры Сложные научные расчеты Интегральное быстродействие до десятков миллиардов операций в секунду; число параллельно работающих процессоров до 100 до 10000000
Большие компьютеры (мэйн-фреймы) Обработка больших объемов информации крупных предприятий, банков Мультипроцессорная архитектура; подключение до 200 рабочих мест до 250000
Супер мини-компьютеры Системы управления предприятиями; многопультовые вычислительные системы Мультипроцессорная архитектура; подключение до 200 терминалов; дисковые запоминающие устройства, наращиваемые до сотен Гбайт до 180000
Мини-компьютеры Системы управления предприятиями среднего размера; многопультовые вычислительные системы Однопроцессорная архитектура, разветвленная периферия до 100000
Рабочие станции Системы автоматизированного проектирования, системы автоматизации экспериментов Однопроцессорная архитектура, высокое быстродействие процессора; специализированная периферия до 50000
Продолжение таблицы 2.1
Класс компьютера Основное назначение Основные технические данные Цена, $ (ориентировочно)
Микро-компьютеры до 5000
Микро-компьютеры Индивидуальное обслуживание пользователя (см. ПК); работа в локальных автоматизированных системах управления Однопроцессорная архитектура, гибкость конфигурации - возможность подключения разнообразных внешних устройств до 510000

Отдельно стоит класс персональных компьютеров (ПК), включающий машины, предназначенные для обслуживания одного рабочего места. Особенно широкое распространение этот класс получил в 1990-х г.г. вследствие бурного развития глобальной компьютерной сети Internet. В настоящее время в отношении ПК действует международный сертификационный стандарт – спецификация PC99. В нем представлены принципы классификации ПК и минимальные требования к каждой из следующих категорий:

·массовый ПК (Consumer PC),

·переносной (портативный) ПК (Mobile PC),

·деловой ПК (Office PC),

·рабочая станция (Workstation PC)

·развлекательный (мультимедийный) ПК (Entertainment PC).

Категория массовых ПК является базовой, в нее попадает большинство из имеющихся в настоящее время ПК. Для категории переносных ПК предъявляется обязательное требование присутствия средств компьютерной связи. В категории деловых ПК понижены требования к работе с графикой и совсем нет требований по воспроизводству звука. В категории рабочих станций усилены требования к устройствам памяти. В категории развлекательных мультимедийных ПК особые требования предъявляются к качеству изображений и звука.

Стоимость портативного ПК в два-пять раз выше, чем у массового, имеющего такие же основные параметры (размер оперативной памяти, тип процессора, емкость жесткого диска и т. д.).

Отнесение машин к той или иной категории весьма условно как из-за размытости границ между ними, так и вследствие широкого внедрения в жизнь практики заказной сборки машин, когда номенклатура узлов ПК и даже конкретные модели подгоняются под требования заказчика.

На протяжении недавней истории ЭВМ, то есть примерно с середины 60-х годов, когда полупроводники уже полностью вытеснили электронные лампы из элементной базы вычислительных машин, в развитии этой области техники произошло несколько драматических поворотов. Все они явились следствием, с одной стороны, бурного развития технологии микропроцессоров, с другой - интенсивного прогресса программного обеспечения компьютеров. Тот и другой процессы развивались параллельно, подстегивая друг друга, в какой-то мере конкурируя. Новые технические возможности, появлявшиеся с созданием новых элементов и устройств, позволили разработать более совершенные (и функционально и по производительности) программы; это, в свою очередь, порождало потребность в новых, более совершенных компонентах и т. д.

В 60-е годы, в эпоху машин третьего поколения, то есть машин на базе отдельных полупроводниковых элементов и интегральных схем, небольшой плотности (типичные представители - компьютеры семейства IBM 360), пользователи пришли к осознанию необходимости изменения организации использования компьютера. До этого компьютер предоставлялся в распоряжение одного человека (это был либо оператор, выполняющий готовую программу, либо программист, занятый разработкой новой программы). Такой порядок не позволял использовать весь потенциал машины. Поэтому возникла технология так называемой пакетной обработки заданий, характерная тем, что пользователь был отделен от машины. Он должен был заранее подготовить свое задание (чаще всего - в виде колоды перфокарт с управляющими кодами и исходными данными), и передать его в руки операторов, которые формировали очередь заданий. Таким образом, машина получала для обработки сразу несколько заданий и не простаивала в ожидании каждого нового задания или реакции пользователя на свои сообщения. Но и этого оказалось недостаточно: по быстродействию центральный процессор намного опережал внешние устройства, такие как считыватели перфокарт и перфолент, алфавитно-цифровые печатающие устройства, и потому его мощность оказывалась не полностью использованной. Возникла идея организации многозадачного использования процессора. Её суть состояла в том, что процессор как бы одновременно выполнял несколько программ («как бы» - потому, что на самом деле процессор работал по-прежнему последовательно). Но когда, например, в рамках какой-то программы очередь доходила до обмена с внешним устройством, эта операция перепоручалась недорогому специализированному устройству, а центральный процессор переключался на продолжение другой программы и т. д. Таким образом, коэффициент использования аппаратной части вычислительной установки резко возрос. В рамках одного из направлений развития идеи многозадачности появились и так называемые многопультовыесистемы. Они представляли собою комплексы, состоявшие из центрального компьютера и группы видеотерминалов (числом до нескольких десятков). Человек-оператор, работавший за пультом такого терминала, ощущал себя полным распорядителем машины, поскольку компьютер реагировал на его действия (в том числе команды) с минимальной задержкой. В действительности же центральный компьютер квазикак бы -одновременно работал со многими программами, переключаясь с одной на другую в соответствии с определенной дисциплиной (например, уделяя каждому терминалу по нескольку миллисекунд в течение секунды).

В 1971 г. был создан первый микропроцессор, то есть функционально законченное устройство, способное выполнять обязанности центрального процессора (правда, в то время, - весьма маломощного). Это имело значение поворотного момента в истории вычислительной техники. (И не только вычислительной: в дальнейшем прогресс микроэлектроники привел к существенным переменам и в других областях - в станкостроении, автомобилестроении, технике связи и т. д.). Совершенствование технологии, опиравшееся на достижения фундаментальных наук, на успехи оптики, точного машиностроения, металлургии, керамики и других отраслей, дало возможность получить микропроцессоры со всё большим количеством элементов размещенных на поверхности полупроводникового кристалла со всё большей плотностью, а, значит, - всё более мощные компьютеры. Одновременно, (что очень важно) , заметно падала и их себестоимость. Забота о возможно более полном использовании вычислительных ресурсов теряла свою остроту, и даже актуальность.

В 1979 г. появился первый персональный компьютер. Мировой лидер в производстве средств вычислительной техники, корпорация IBM, отреагировала на его появление с некоторым запаздыванием, но в 1980 г. выступила на рынке со своим PC IBM, самой важной особенностью которого была так называемая открытая архитектура . Это означает, во-первых, возможность реализации принципа взаимозаменяемости, то есть использования для сборки ПК узлов от разных производителей (лишь бы они соответствовали определенным соглашениям), и во-вторых - возможность доукомплектования ПК, наращивания его мощности уже в ходе его эксплуатации. Это смелое и дальновидное техническое решение дало мощный толчок всей индустрии ПК. Десятки и сотни фирм включились в разработку и производство отдельных блоков и целых ПК, создав всплеск большой спроса на элементы, новые материалы, новые идеи. Все последующие годы отмечены фантастически быстрым совершенствованием микропроцессоров (каждые пять лет плотность размещения элементов на полупроводниковом кристалле возрастала в десять раз!), запоминающих устройств (оперативных и накопительных), средств отображения и фиксации данных. И, как уже указывалось, очень существенно то, что одновременно снижались себестоимость и цены на ПК.

В конечном счете, последние два десятилетия ознаменованы широчайшим распространением ПК во всех сферах человеческой деятельности, (включая быт, досуг и домашнее хозяйство). Заметны и социальные последствия этого феномена (это -важный отдельный вопрос). . Стоит отметить, что ПК стали преобладать и как аппаратная база в системах управления, вытесняя оттуда большие компьютеры., чЭто привело к ряду негативных последствий (, в частности, к неприемлемому снижению уровня централизации и частичной потере управляемости, что, правда частично компенсировалось развитием новых сетевых технологий, например – сетей типа «тонкий клиент»).

Как и ранее, технологические достижения принесли не только удовлетворение, но и новые проблемы. Усилия по их разрешению приводят к новым интересным результатам как в аппаратной сфере, так и в создании новых программных средств и систем. Проиллюстрируем это положение несколькими примерами.

Увеличение емкости накопителей и снижение стоимости хранения данных дало толчок расширению применения баз данных в составе систем управления разного назначения, возросло осознание ценности баз данных. Отсюда возникла потребность предоставить доступ к информационным ресурсам многим пользователям (тем, кому это необходимо по роду службы). .Ответом на нее стало создание локальных вычислительных сетей. Такие сети позволяют решить и задачу повышения загрузки дорогостоящих аппаратных средств (, например, лазерных или светодиодных принтеров, плоттеров). Появление сетей, в свою очередь, обострило потребность в еще более мощных накопителях и процессорах и т. д.

Увеличение быстродействия процессоров и емкости ОЗУ создало предпосылки для перехода к графическому интерфейсу. Для IBM-подобных компьютеров это была сначала графическая оболочка Windows, а затем - полноценные операционные системы (Windows -95, -98, -2000, -XP). Но одновременно все более ощутимым стало и осознание неполного доиспользованностиния вычислительной мощности аппаратной части компьютера. Возродилась, правда уже нана новой основе, идея многозадачности. Она воплощена в тех же новых операционных системах. Так что, работая, например, под Windows 982000, можно одновременно выполнять обработку какого–то массива данных, распечатывать результаты предыдущей программы и принимать электронную почту.

Компьютеризация всех сфер жизни вызвала повышенное внимание масс рядовых пользователей к такой важной теме как воздействия компьютера на состояние здоровья. Этому способствуют и многочисленные публикации последнего времени в отечественной и зарубежной прессе. Так, по данным Министерства Труда США, “повторяющиеся травмирующие воздействия при работе с компьютером"” обходятся корпоративной Америке в 100 млрд. $ ежегодно. При этом пострадавшие иногда расплачиваются жестокими болями в течение всей жизни. Актуальность проблематики очевидна. Вместе с тем, уровень отечественных медицинских публикаций на эту тему либо сильно завышен и не доступен рядовому пользователю (статьи в изданиях для врачей) либо занижен, так как не предусматривает комплексного анализа ситуации. Обычно авторы популярных изданий сосредотачивают внимание на чем - то одном, и чаще всего это – тема влияния излучений от электронно-лучевого монитора.

Да, действительно, вокруг такого монитора присутствуют переменные электрическое и магнитное поля, имеется рентгеновское излучение. Однако технические характеристики мониторов и других частей компьютера в настоящее время жестко контролируются специальными международными стандартами, что исключает вредные воздействия при правильной эксплуатации. Любой уважающий себя производитель или поставщик компьютерного оборудования стремится получить на него сертификат по шведскому международному стандарту ТСО. Покупателю остается удостовериться в наличии такого сертификата и далее он может быть уверен в высоком качестве монитора. Кроме того, проблема влияния излучений полностью отсутствует у жидкокристаллических мониторов, доля которых на рынке превысила в настоящее время 50%. Таким образом, пользователь не должен испытывать своего рода фобии при постоянной работе с компьютером, необходимио лишь уделить должное внимание правильной организации своего рабочего места и соблюдению режима работы. Все необходимые для этого рекомендации содержатся в официальном документе Министерства Здравоохранения РФ “Санитарные правила и нормы. Сан ПиН 2.2.2.542-96.”

Обилие ПК в конторах и на предприятиях иногда создает ложное впечатление об уходе больших и средних машин из сферы управления, из систем обработки деловой информации. Однако это не так. Например, в крупных банках ПК используются в основном как устройства оформления первичных операций и средства общения с клиентами, то есть в качестве терминалов, а все проводки, проверки кредитоспособности и т. п. операции выполняются на больших компьютерах. И на промышленных предприятиях при построении автоматизированных информационных систем также может оказаться более рентабельным применение многопультовой системы на базе большого или среднего компьютера. Так, например, стоимость одного рабочего места в многопультовой системе на базе компьютера типа ЕС 1066 стоказываетсяановится ниже, чем при использовании ПК, начиная с числа терминалов, равного 200.

Подводя итоги, можно сказать, что основные наблюдаемые ныне тенденции развития компьютерной техники выражаются в следующем:

· Продолжается рост вычислительной мощности микропроцессоров. При дальнейшем увеличении плотности размещения элементов тактовая частота процессоров перевалила барьер 32 Ггц. Наиболее популярны модели Intel Pentium-4 2600-3200 (высокая скорость без мелких, но часто очень мешающих про­блем), AMD Athlon XP 2600-2800 (отличная произво­дительность по приемлемой цене).

· Повышение мощности микропроцессоров позволяет совмещать в одном элементе («на одном кристалле») все большее число устройств. Это, в свою очередь, дает возможность реализовать на одной печатной плате большее число функций и за счет этого сокращать число отдельных блоков компьютера;

· Расширяется набор функций, реализуемых в одном ПК, он становится все более «разносторонним» аппаратом. Особенно наглядно это проявляется в мультимедийном компьютере, который представляет собой, по существу, функциональный комбайн: помимо своих «прямых обязанностей» - обработки алфавитно–цифровой информации он способен работать со звуком (воспроизведение и запись; редактирование, включая создание специальных эффектов и др.); воспроизводить видеосигнал (прием телепередач; запись кадров и их обработка; воспроизведение аналоговых и цифровых видеозаписей, компьютерных анимаций и др.); эффективно работать в компьютерных сетях. Многообразие возможностей требует, в свою очередь, расширения номенклатуры компонентов и существенного повышения мощности базовых блоков.

Читайте также: