Почему данные на флешке не хранятся вечно? Как выбрать и хранить флешку, чтобы не потерять информацию Каким способом записываются данные на flash накопитель

На сегодняшний день флешки являются самыми популярными внешними носителями данных. В отличие от оптических и магнитных дисков (CD/DVD и винчестеры соответственно), флеш-накопители более компактны и устойчивы к механическим повреждениям. А за счет чего были достигнуты компактность и устойчивость? Давайте же разберемся!

Первое, что следует отметить — внутри flash-накопителя нет движущихся механических частей, которые могут пострадать от падений или сотрясений. Это достигается за счет конструкции — без защитного корпуса флешка представляет собой печатную плату, к которой припаян USB-разъем. Давайте рассмотрим её составляющие.

Основные компоненты

Составные части большинства флешек можно разделить на основные и дополнительные.


К основным относятся:

  1. чипы NAND-памяти;
  2. контроллер;
  3. кварцевый резонатор.
  4. USB-разъем

NAND-память
Накопитель работает благодаря NAND-памяти: полупроводниковым микросхемам. Чипы такой памяти, во-первых, весьма компактны, а во-вторых — очень ёмкие: если на первых порах флешки по объему проигрывали привычным на тот момент оптическим дискам, то сейчас превышают по ёмкости даже диски Blu-Ray. Такая память, ко всему прочему, еще и энергонезависимая, то есть для хранения информации ей не требуется источник питания, в отличие от микросхем оперативной памяти, созданных по похожей технологии.


Однако у НАНД-памяти есть один недостаток, в сравнении с другими типами запоминающих устройств. Дело в том, что срок службы этих чипов ограничен определенным количеством циклов перезаписи (шагов чтения/записи информации в ячейках). В среднем количество read-write cycles равно 30 000 (зависит от типа чипа памяти). Кажется, это невероятно много, но на самом деле это равно примерно 5 годам интенсивного использования. Впрочем, даже если ограничение будет достигнуто, флешкой можно будет продолжать пользоваться, но только для считывания данных. Кроме того, вследствие своей природы, NAND-память очень уязвима к перепадам электричества и электростатическим разрядам, так что держите её подальше от источников подобных опасностей.

Контроллер
Под номером 2 на рисунке в начале статьи находится крохотная микросхема — контроллер, инструмент связи между флеш-памятью и подключаемыми устройствами (ПК, телевизорами, автомагнитолами и пр.).


Контроллер (иначе называется микроконтроллер) представляет собой миниатюрный примитивный компьютер с собственным процессором и некоторым количеством RAM, используемыми для кэширования данных и служебных целей. Под процедурой обновления прошивки или BIOS подразумевается как раз обновление ПО микроконтроллера. Как показывает практика, наиболее частая поломка флешек — выход из строя контроллера.

Кварцевый резонатор
Данный компонент представляет собой крохотный кристалл кварца, который, как и в электронных часах, производит гармонические колебания определенной частоты. Во флеш-накопителях резонатор используется для связи между контроллером, NAND-памятью и дополнительными компонентами.

Эта часть флешки также подвержена риску повреждения, причем, в отличие от проблем с микроконтроллером, решить их самостоятельно практически невозможно. К счастью, в современных накопителях резонаторы выходят из строя относительно редко.

USB-коннектор
В подавляющем большинстве случаев в современных флешках установлен разъем USB 2.0 типа A, ориентированный на прием и передачу. В самых новых накопителях используется USB 3.0 типа А и типа C.

Дополнительные компоненты

Кроме упомянутых выше основных составляющих запоминающего flash-устройства, производители нередко снабжают их необязательными элементами, такими как: светодиод-индикатор, переключатель защиты от записи и некоторые специфические для определенных моделей особенности.

Светодиодный индикатор
Во многих flash-накопителях присутствует небольшой, но довольно яркий светодиод. Он предназначен для визуального отображения активности флешки (запись или считывание информации) или же просто является элементом дизайна.


Этот индикатор чаще всего не несет никакой функциональной нагрузки для самой флешки, и нужен, по сути, только для удобства пользователя или для красоты.

Переключатель защиты от записи
Этот элемент характерен скорее для SD-карт, хотя порой встречается и на запоминающих устройствах USB. Последние нередко используются в корпоративной среде как носители разнообразной информации, в том числе важной и конфиденциальной. Чтобы избежать инцидентов со случайным удалением таких данных, производителями флеш-накопителей в некоторых моделях применяется переключатель защиты: резистор, который при подключении в цепь питания запоминающего устройства не дает электрическому току добираться к ячейкам памяти.


При попытке записать или удалить информацию с накопителя, в котором включена защита, ОС выдаст такое вот сообщение.

Подобным образом реализована защита в так называемых USB-ключах: флешках, которые содержат в себе сертификаты безопасности, необходимые для корректной работы некоторого специфического ПО.

Этот элемент тоже может сломаться, в результате чего возникает досадная ситуация — девайс вроде работоспособен, но пользоваться им невозможно. У нас на сайте есть материал, который может помочь решить эту проблему.

Уникальные компоненты

К таковым можно отнести, например, наличие разъемов Lightning, microUSB или Type-C: флешки с наличием таковых предназначены для использования в том числе на смартфонах и планшетах.

Информация на флешке хранится в ячейках памяти, каждая из которых может запомнить один бит: 0 или 1. Флешка состоит из миллиардов таких ячеек памяти.

Ячейка памяти

Одна ячейка памяти - один бит. Одна буква в тексте - 8 бит или 1 байт. Этот текст занимает примерно 6 тысяч байт, то есть, чтобы сохранить его на флешку, потребуется 48 тысяч ячеек памяти. Для нового эпизода Доктора Хауса в HD потребуется примерно 11 миллиардов ячеек памяти. Трудно представить себе, что они все легко поместятся на площади в 1 квадратный сантиметр.

Ячейка памяти - это транзистор. С двух сторон у него находится два полупроводника n-типа, у которых много свободных электронов, которые могут свободно двигаться, то есть переносить ток.

Между этими полупроводниками находится полупроводник p-типа, у которого, наоборот, недостаток электронов. Ток там переносится, соответственно, дырками от недостающих электронов.

Ток не может проходить между n-полупроводниками, потому что между ними находится p-проводник, а у них разный тип проводимости.

Но над p-полупроводником находится управляющий затвор. Это такой электрод, на который можно подать положительное или отрицательное напряжение. Если на него подать положительное напряжение, то он отодвинет дырки в p-полупроводнике и притянет электроны, поскольку противоположные заряды притягиваются.

Плавающий затвор окружен диэлектриком, чтобы электрончики с него не сбежали. Теоретически, ячейка памяти может хранить свое значение бесконечно, ну или по крайней мере десятки лет.

Получится так называемый n-переход, по которому может пройти электричество с одного полупроводника n-типа на другой и транзистор сможет проводить ток.

Между управляющим затвором и p-полупроводником есть металлическая пластинка - это плавающий затвор. Если ее зарядить отрицательно, то она будет мешать работе управляющего затвора, и транзистор не будет проводить ток вне зависимости от того, есть на управляющем затворе положительное напряжение или нет.

Как читаются данные

Чтобы проверить, что записано в ячейке памяти, ноль или единица, на управляющий затвор подают напряжение и проверяют, может ли идти по транзистору ток:

  • - Если на управляющем затворе есть избыток электронов, то ток идти не будет, значит это единица.
  • - Если на управляющеи затворе избытка электронов нет, то ток пойдет, значит это ноль.

Как записываются

Чтобы записать единичку в ячейку памяти, надо на плавающий затвор закинуть электронов. Но это не так-то просто сделать, потому что плавающий затвор окружен диэлектриком, который, как известно, не проводит ток.

Туннельный эффект - явление, возможное только в квантовой механике, когда, благодаря своим волновым свойствам, электрон перепрыгивает с одного места на другое. То есть он оказывается по ту сторону диэлектрика, не проходя через него. В классической механике такое невозможно.

Для того, чтобы поместить электроны в плавающий затвор, на управляющий затвор подают положительное напряжение - гораздо выше, чем при чтении. Часть проходящих электронов запрыгивают на плавающий затвор благодаря туннельному эффекту.

Стирание данных происходит точно так же, только вместо положительного напряжение на управляющий затвор подается отрицательное, и электроны спрыгивают с плавающего затвора.

Мы привыкли пользоваться благами цивилизации и в последнее время их даже не замечаем. Но многие задаются вопросом, как работает тот или иной механизм. Эта статья написана для любознательных людей, которые задаются вопросом, как работает флешка? По восстановлению флеш-накопителей можете .

Для хранения информации используются ячейки памяти. Одна ячейка способна сохранить в себе только один бит. На этот бит записывается элемент двоичного кода 0 или 1.

В одной флешке находятся миллиарды ячеек, которые готовы запоминать для Вас информацию. Из восьми бит получается один байт. Так накопитель на один гигабайт состоит из 8 589 934 592 ячеек памяти, а эта статья вмещается приблизительно в 20 000 ячеек.

Подробнее о ячейках памяти

Ячейки памяти являются транзисторами. Транзистор имеет два полупроводника n-типа, они находятся у него по бокам. Эти полупроводники имеют множество свободных электронов. При движении этих частиц проходит ток.

Посредине полупроводников n-типа размещён полупроводник p-типа, который характеризуется недостатком электронов. По нему ток переносится по дырках, в которых недостаёт электронов.

Из-за различающегося типажа проводимости этих полу проводимых материалов, ток не имеет возможности пройти между ними.

Транзисторная конструкция предусматривает наличие управляющего затвора, который расположен над p-полупроводником. Он является электродом и на него подаётся напряжение. При подаче положительного напряжения он отодвигает дырки р-полупроводника и притягивает частицы. Это обосновано притягиванием противоположных зарядов.

С этого получается так званый n-переход. Он нужен для перехода электричества с одного n-полупроводника на другой, в результате чего транзистор пропускает ток.

Управляющий затвор имеет разделение с p-полупроводником, которое называется плавающий затвор (пластина из поликристаллического кремния). При отрицательном заряде пластины ток не будет проводиться транзистором, не завися от заряда управляющего затвора, что может помешать его работе в дальнейшем.

Чтение данных

Процесс считывания информации с флешки происходит следующим образом. На управляющий затвор подаётся напряжение. Это необходимо для определения ноля или единицы, которые находятся в этой ячейке памяти. Сочетание нулей и единиц дает представление машине, которая считывает информацию, о закодированных символах.

При избытке электронов на управляющем затворе ток не идёт. Это свидетельствует о единице.

При нехватке электронов на управляющем затворе ток идёт. Это свидетельствует о нуле.

Запись данных

Для записи информации необходимо наполнить плавающий затвор электронами. Но это сложная задача из-за слоя диэлектрика, который окружает его и не даёт пройти току.

Электроны в плавающую ячейку помещаются подачей положительного заряда, выше того что подаётся при чтении, при котором они и запрыгивают, проходя слой диэлектрика.

При стирании информации на плавающий затвор подаётся отрицательное напряжение, и электроны спадают с плавающего затвора.

Именно так и работает та маленькая вещица, которая облегчает нам обмен информации.


Предлагаю в качестве подарка скачать бесплатную книгу: причины зависаний на ПК, восстановление данных, компьютерная сеть через электропроводку и много других интересных фишек.
Еще больше интересных новостей, а главное общение, решений ваших проблем! Добавляйтесь в телеграм -

Как работает флешка?

Флешки, или USB флэш-накопители - это устройства для хранения, записи и считывания информации. Благодаря им мы можем носить в кармане огромные массивы данных: альбомы фотографий, музыкальные концерты, прайс-листы, карты, презентации и т.п. Но каким образом это становится возможным? Поговорим в этой статье о том, как работает флешка.

Как работает флешка: устройство

Самая простая флешка рассчитана минимум на 10 000 циклов перезаписи. Но лучшие экземпляры могут выдержать и 100 000 циклов. Если не перезаписывать информацию по несколько раз на дню, этого ресурса могло бы хватить на неограниченное время. Однако, обычно данные хранятся не более 10 лет. Как правило, за это время люди успевают несколько раз заменить накопитель на более современное устройство.

И тем не менее, иногда бывает, что флеш-карта вдруг выходит из строя: при подключении компьютер «не узнаёт» её, сообщая, что это «неизвестное устройство». Чтобы понять, нужно хотя бы в общих чертах представлять её устройство.

Внутри маленького флеш-накопителя помещается несколько блоков:

  • микроконтроллер;
  • микросхема (чип) флэш-памяти;
  • источник тактовой частоты - кварцевый резонатор;
  • светодиод;
  • переключатель защиты от записи.

Основная часть - это матрица памяти. Она состоит из множества ячеек, в которых записывается информация. Одна ячейка - 1 бит информации. Компьютер использует двоичную логику: оперирует исключительно только нулями и единицами. Есть напряжение в ячейке - единица, нет напряжения - ноль. Для того, чтобы записать один знак - букву, цифру, пробел и т.п. - нужно 8 бит или 8 ячеек. 8 бит называются байтом. В каждой флешке могут храниться миллионы байт информации.

Главное достоинство матрицы памяти заключается в том, что данные не теряются при отсутствии напряжения питания, т.е. она энергонезависима.

Управляет работой ячейками памяти контроллер, это блок управления накопителя. Контроллер при подключении прогоняет ток по всем ячейкам, проверяет, где записан 0, а где 1. Сигнал с компьютера поступает на него через разъём.

В соответствии с этим сигналом-запросом блок управления обращается именно к тем ячейкам, которые указаны в запросе, и позволяет данным, записанным в этих ячейках, поступать в компьютер. Либо наоборот, контроллер считывает данные с компьютера и направляет их в выбранные ячейки.

Для нормального функционирования флешки необходима тактовая частота, которая генерируется кварцевым резонатором. Именно он задаёт скорость работы флешки.

Что делать, чтобы флешка работала без сбоев

Никогда не выдёргивайте флешку из работающего компьютера. Предварительно нужно отключить её. В этих случаях компьютер пишет, что устройство памяти можно удалить. Это означает, что с компьютера на контроллер поступил сигнал отключения, и в блок управления записалась соответствующая служебная информация.

Если выдернуть флешку без отключения, в контроллере служебная информация может сбиться, и тогда он уже не сможет подключиться к считывающему устройству. То же самое может произойти при резких перепадах напряжения.

Контроллер - самая уязвимая часть флешки. Качественная матрица памяти и кварцевый генератор почти никогда не выходят из строя. Чтобы их погубить, нужно либо разломать USB-устройство, либо подать очень высокое напряжение. А вот разъём покалечить можно, если обращаться с ним неаккуратно.

    Как это часто бывает, существуют две стороны рассматриваемого вопроса. Те флеш-накопители, которые способны хранить в одной ячейке два, а то и три бита дешевле. На их базе можно сделать более емкие накопители. Но при этом страдают скорость и надежность. Вышеизложенная информация отвечает также и на вопрос: почему флешки меньшего объема порой стоят значительно дороже своих значительно более емких аналогов?

    Флеш-накопители лишены движущихся деталей, они работают бесшумно и быстро. На фоне других типов хранилищ информации они выделяются своей компактностью. используется в принтерах, располагаясь на их платах и будучи покрытой пластиком или специальной резиной. Флеш-накопители вставляют в USB-порт компьютера или в его картридер при помощи специального адаптера. В современных компьютерах нет нужды ставить специальные драйверы для обеспечения поддержки флеш-накопителей. Не нужен им и дополнительный источник питания.

    Причины повреждений и постепенной деградации флеш-накопителя

    Большей частью к повреждению флеш-накопителя ведут те же причины, которые заставляют аккумулятор терять свой заряд после нескольких сот циклов перезарядки. Тысячи циклов перезаписи ведут к тому, что модули NAND-флеш теряют свою способность удерживать данные. SLC-флеш в десять раз более устойчива в этом отношении, чем MLC-флеш, и в двадцать раз, чем TLC-флеш. По этой причине для промышленных задач используется самый надежный тип: SLC, а в потребительских устройствах «средненький» MLC.

    Чем старше флешка, тем она менее надежна. Этот процесс называется постепенной деградацией. Происходит это по мере старения даже в тех случаях, когда флешка не подвергалась явно выраженному неблагоприятному воздействию окружающей среды и не была физически повреждена.

    Фактор, влияющий на надежность и долговечность флешки называют [способностью к] удержанию [информации]. По-английски просто «удержанием» («retention»). «Удержание» характеризует то, как долго ячейка памяти способна поддерживать свое ранее запрограммированное состояние. Этот фактор очень чувствителен к окружающей среде. Воздействие высоких температур ведет к сокращению времени «удержания». Число циклов перезаписи тоже ведет к удержанию, в особенности это ощутимо при работе с TLC-накопителями.

    Под воздействием высоких температур и повышенной влажности образуется конденсат, который ведет к коррозии контактов и неблагоприятно воздействует на микросхему.

    Но наиболее частой причиной потери данных на флешке является ее некорректное отключение от компьютера или иного устройства. Последствием неправильного отключения может стать повреждение файловой системы. Обычно в этой ситуации, даже если данные потеряны, сам накопитель остается физически исправным.

    Но в некоторых редких случаях, неправильное отключение флешки может вести к повреждению ячеек флеш-памяти, в которых хранится внутренняя информация флеш-накопителя. В таких случаях к накопителю становится невозможно получить доступ средствами операционной системы и, следовательно, не получается и восстановить его работоспособность при помощи соответствующих программных утилит. Чтобы извлечь информацию в такой ситуации, потребуется помощь профессионала. Чтобы избежать подобного повреждения, следует всегда корректно отключать флешку. Особую опасность представляет для флешки ее отключение в процессе чтения или записи данных.

    Поскольку флешка в любом случае подвергается неблагоприятному воздействию, она так или иначе подвержена постепенной деградации. Идеальных условий в реальном мире просто не бывает. В более благоприятных условиях (при отсутствии других повреждений и воздействия иных факторов) флешка прослужит дольше, но тоже не вечно. С годами желтеет и становится ломкой бумага, ржавеет и порой рассыпается в пыль железо. Флешка не является исключением из общего правила, распространяющегося на все предметы, которые подвергаются тем или иным воздействиям.

    Как избежать потери флешкой данных?

    Раз уж деградация неизбежна, необходимо соблюдать меры предосторожности. Следует довольно часто осуществлять резервное копирование важных данных. Техника, увы, несовершенна. Специалисты по восстановлению данных в некоторых случаях способны «вытянуть» информацию с поврежденного носителя, но это стоит дорого и потребует времени. Да и уверенности в том, что данные будут спасены нет и быть не может. Поэтому резервное копирование предпочтительнее.

    Учитывая ограничения флеш-технологии, данные на этих накопителях не следует обновлять слишком часто. Для важных данных и приложений лучше использовать более надежную флеш-память, однослойную SLC.

    Флешку следует извлекать по правилам и никогда не отключать ее в процессе чтения и записи данных. Необходимо избегать воздействия на флеш-накопитель высоких температур, повышенной влажности и давления.

    По материалам datarecovery.net

Читайте также: